Gaussian-Like Spatial Priors for Articulated Tracking
نویسندگان
چکیده
We present an analysis of the spatial covariance structure of an articulated motion prior in which joint angles have a known covariance structure. From this, a well-known, but often ignored, deficiency of the kinematic skeleton representation becomes clear: spatial variance not only depends on limb lengths, but also increases as the kinematic chains are traversed. We then present two similar Gaussian-like motion priors that are explicitly expressed spatially and as such avoids any variance coming from the representation. The resulting priors are both simple and easy to implement, yet they provide superior predictions.
منابع مشابه
Stick It! Articulated Tracking Using Spatial Rigid Object Priors
Articulated tracking of humans is a well-studied field, but most work has treated the humans as being independent of the environment. Recently, Kjellström et al. [1] showed how knowledge of interaction with a known rigid object provides constraints that lower the degrees of freedom in the model. While the phrased problem is interesting, the resulting algorithm is computationally too demanding t...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملPeople Tracking and Segmentation Using Efficient Shape Sequences Matching
We design an effective shape prior embedded human silhouettes extraction algorithm. Human silhouette extraction is found challenging because of articulated structures, pose variations, and background clutters. Many segmentation algorithms, including the Min-Cut algorithm, meet difficulties in human silhouette extraction. We aim at improving the performance of the Min-Cut algorithm by embedding ...
متن کاملDiffusion-based spatial priors for functional magnetic resonance images
We recently outlined a Bayesian scheme for analyzing fMRI data using diffusion-based spatial priors [Harrison, L.M., Penny, W., Ashburner, J., Trujillo-Barreto, N., Friston, K.J., 2007. Diffusion-based spatial priors for imaging. NeuroImage 38, 677-695]. The current paper continues this theme, applying it to a single-subject functional magnetic resonance imaging (fMRI) study of the auditory sys...
متن کاملArticulated Multi-body Tracking under Egomotion
In this paper, we address the problem of 3D articulated multi-person tracking in busy street scenes from a moving, human-level observer. In order to handle the complexity of multi-person interactions, we propose to pursue a twostage strategy. A multi-body detection-based tracker first analyzes the scene and recovers individual pedestrian trajectories, bridging sensor gaps and resolving temporar...
متن کامل